
Operating System Concepts – 9th Ed. Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini Venkatasubramanian

Chapter 12: File System
Implementation

2

Chapter 12: File System Implementation

 File-System Structure
 Directory Implementation
 Allocation Methods
 Free-Space Management
 Efficiency and Performance
 Recovery

3

Objectives

 To describe the details of implementing
 local file systems and
 directory structures

 To discuss block allocation and free-block algorithms and trade-offs

4

Basics: File-System Structure

 File structure
 Logical storage unit
 Collection of related information

 File system resides on secondary storage (disks)
 Provided user interface to storage

mapping logical to physical
 Provides efficient and convenient access to disk by allowing

data to be stored, located, and retrieved easily
 Disk provides in-place rewrite and random access

 It is possible to read a block from the disk, modify the block,
and write it back into the same place.

 I/O transfers performed in blocks of 1 or more sectors
 A sector is usually 512 bytes

 File control block (FCB) – storage structure consisting of
information about a file

17

Directory Implementation

 The choice of the directory implementation is crucial for the
efficiency, performance, and reliability of the file system.

 Linear list of file names with pointer to the data blocks
 Pros: Simple to program
 Cons: Time-consuming to execute -- Linear search time
 Solutions:

 Keep sorted + binary search
 Use indexes for search, such as B+ tree

 Hash Table – linear list with hash data structure
 Hash on file name
 Decreases directory search time
 Collisions – situations where two file names hash to the

same location
 Each hash entry can be a linked list - resolve collisions by

adding new entry to linked list.

18

Allocation of Disk Space

 Low level access methods depend upon the disk allocation scheme used to
store file data
 Contiguous Allocation
 Linked List Allocation
 Indexed Allocation

19

Allocation Methods - Contiguous
 An allocation method refers to how disk blocks are allocated for files

 Contiguous allocation – each file occupies set of contiguous blocks
 Best performance in most cases

 Commonly, hardware is optimized for sequential access
 For a magnetic disk – reduces seek time, head movement

 Simple – only info required:
 starting location (block #) and
 length (number of blocks)

 Problems include
 finding space for file,
 knowing file size,
 external fragmentation,
 need for compaction off-line (downtime) or on-line

– Can be costly

20

Contiguous Allocation
 For simplicity, assume 1 block = 1 sector
 Mapping from logical to physical - <Q, R>

LA/512

Q

R

Block to be accessed = Q + starting address
Displacement into block = R

22

Allocation Methods - Linked
 Linked allocation – each file a linked list of blocks
 Blocks may be scattered anywhere on the disk.
 Each block contains pointer to the next block

 Disk space is used to store pointers,
 if disk block is 512 bytes, and pointer (disk address)

requires 4 bytes, user sees 508 bytes of data.
 Pointers in list not accessible
 File ends at nil pointer

 Pros: No external fragmentation
 No compaction

 Cons: Locating a block can take many I/Os and disk seeks

pointer
Block =

Data

23

Linked Allocation

 Mapping from logical address o physical

Block to be accessed is the Q-th block in the linked chain of blocks
representing the file.

Displacement into block = R + 4

LA/508
Q

R

24

Linked Allocation

25

Linked Allocation (cont.)
 Slow - defies principle of locality.

 Need to read through linked list nodes sequentially to find the record of
interest.

 Not very reliable
 System crashes can scramble files being updated.

 Important variation on linked allocation method
 File-allocation table (FAT) - disk-space allocation used by MS-DOS and

OS/2.

28

File Allocation Table (FAT)
 Instead of link in each block…

 put all links in one table
 the File Allocation Table

(FAT)
 One entry per physical block in disk

 Directory points to first & last
blocks of file

 Each block points to next block
(or EOF)

 Unused block: value =0

29

FAT File Systems

 Advantages
 Advantages of Linked File System
 FAT can be cached in memory
 Searchable at CPU speeds, pseudo-random access

 Disadvantages
 Limited size, not suitable for very large disks
 FAT cache describes entire disk,

 not just open files!
 Not fast enough for large databases

 Used in MS-DOS, early Windows systems

30

Disk Defragmentation

 Re-organize blocks in disk so that file is (mostly) contiguous
 Link or FAT organization preserved
 Purpose:

 To reduce disk arm movement during sequential accesses

30

31

Allocation Methods - Indexed

 If FAT is not used, linked allocation cannot support efficient direct access,
 since the pointers to the blocks are scattered with the blocks

themselves all over the disk and must be retrieved in order.
 How to solve this?

 Indexed allocation
 Each file has its own index block(s) of pointers to its data blocks

 Logical view

index table

32

Example of Indexed Allocation

33

Indexed Allocation (Cont.)

 Dynamic access without external fragmentation, but have overhead
of index block

 Mapping from logical to physical
 in a file of maximum size of 256K bytes and
 block size of 512 bytes.
 We need only 1 block for index table

LA/512
Q

R

Q = displacement into index table
R = displacement into block

34

Indexed Allocation – Mapping (Cont.)
 A single index block might not be able to hold enough pointers for a large file

 Several schemes to deal with this issue (e.g., linked, multi-level, combined)
 Linked scheme – Link blocks of index table (no limit on size)

Index block file block

link

link

35

Indexed Allocation – Mapping (Cont.)
 Two-level index (generalizes to multi-level)

 4K blocks could store 1,024 four-byte pointers in outer index –
 1,048,567 data blocks and file size of up to 4GB

Index block

2nd level Index

link

link

37

Combined Scheme: used in UNIX UFS
4K bytes per block, 32-bit addresses

38

Combined Scheme
 Another alternative, used in UNIX-based file systems

 Keep the first, say, 15 pointers of the index block in the file’s inode.
 First 12 of these pointers point to direct blocks

 They contain addresses of blocks that contain data of the file.
 Thus, the data for small files (of no more than 12 blocks) do not need

a separate index block.
 If the block size is 4 KB, then up to 48 KB of data can be accessed

directly.
 The next 3 pointers point to indirect blocks:

1. The first points to a single indirect block,
– which is an index block containing not data but the addresses of

blocks that do contain data.
2. The second points to a double indirect block,

– which contains the address of a block that contains the addresses
of blocks that contain pointers to the actual data blocks.

3. The last pointer contains the address of a triple indirect block.

39

Copyright ©: Nahrstedt, Angrave,
Abdelzaher

39

Unix inode
 An inode (index node) is a control structure that contains key information

needed by the OS to access a particular file.
 Several file names may be associated with a single inode,
 but each file is controlled by exactly ONE inode.

 On the disk, there is an inode table
 Contains the inodes of all the files in the filesystem.
 When a file is opened, its inode is brought into main memory and stored in

a memory-resident inode table.

40

Information in the inode

Copyright ©: Nahrstedt, Angrave,
Abdelzaher

41

Directories
 In Unix a directory is simply a file that contains a list of file names plus pointers

to associated inodes

Inode table

i1

i2

i3

i4

Name1

Name2

Name3

Name4

…
Directory

… Copyright ©: Nahrstedt, Angrave,
Abdelzaher

44

Free-Space Management

 File system maintains free-space list to track available blocks/clusters
 (Using term “block” for simplicity)
 Several ways to implement

 Bit vector or bit map (n blocks)

…
0 1 2 n-1

bit[i] =



 1 ⇒ block[i] free

0 ⇒ block[i] occupied

45

Bit Vector (contd.)
 Pros:

 Relative simplicity
 Efficiency in finding the first n consecutive free blocks on the disk.

 Easy to get contiguous files

 Example: one technique for finding the first free block
 Sequentially check each word in the bit map if it is not 0

 0-valued word contains only 0 bits
 represents a set of allocated blocks.

 First non-0 word is scanned for the first 1 bit,
 which is the location of the first free block.

 The calculation of this free block number is
 (number of bits per word) * (number of 0-value words) + offset of first 1

bit.

46

Free-Space Management (Cont.)

 Bit map requires extra space
 Example:

block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 bits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

 Example: BSD File system

47

Linked Free Space List on Disk

 Linked list (free list) -- keep a
linked list of free blocks

 Pros:
 No waste of space
 No need to traverse the entire

list (if # free blocks recorded)
 Cons:

 Cannot get contiguous space
easily

 not very efficient because
linked list needs traversal.

48

Free-Space Management (Cont.)

 Linked list of indices - Grouping
 A modification of the free-list approach
 Keep a linked list of index blocks.
 Each index block contains:

1. addresses of free blocks and
2. a pointer to the next index block.

 Pros: A large number of free blocks can now be found quickly
 Compared to the standard linked-list approach

 Counting
 Linked list of contiguous blocks that are free
 Free list node contains pointer and number of free blocks

starting from that address.

50

Efficiency and Performance
 In general, the efficiency of a file system dependents on:

 Disk allocation and directory algorithms
 Types of data kept in file’s directory entry
 Fixed-size or varying-size data structures used

 Even after the basic file-system algorithms have been selected, we can still
improve performance in several ways.

51

Efficiency and Performance (Cont.)
 Performance improved by:

 Keeping data and metadata close together – generic principle
 Do not want to perform a lot of extra I/O just to get file information

 Using buffer cache – separate section of main memory for frequently
used blocks

 Optimize caching - depending on the access type of the file.
 E.g., a file being accessed sequentially then use read-ahead
 Read-ahead -- a requested page and several subsequent pages are

read and cached.
 These pages are likely to be requested after the current page is

processed.
 Retrieving these data from the disk in one transfer and caching them

saves a considerable amount of time.

56

Recovery

 Files and directories are kept both in main memory and on disk
 Care must be taken to ensure that a system failure does not

result in loss of data or in data inconsistency.
 How to recover from such a failure

 Consistency checking – compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies
 Can be slow and sometimes fails

 Use system programs to back up data from disk to another
storage device

 Recover lost file or disk by restoring data from backup

Operating System Concepts – 9th Ed. Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini Venkatasubramanian

End of Chapter 12

	Chapter 12: File System Implementation
	 Chapter 12: File System Implementation
	Objectives
	Basics: File-System Structure
	Directory Implementation
	Allocation of Disk Space
	Allocation Methods - Contiguous
	Contiguous Allocation
	Allocation Methods - Linked
	Linked Allocation
	Linked Allocation
	Linked Allocation (cont.)
	File Allocation Table (FAT)
	FAT File Systems
	Disk Defragmentation
	Allocation Methods - Indexed
	Example of Indexed Allocation
	Indexed Allocation (Cont.)
	Indexed Allocation – Mapping (Cont.)
	Indexed Allocation – Mapping (Cont.)
	Combined Scheme: used in UNIX UFS �
	Combined Scheme
	Unix inode
	Information in the inode
	Directories
	Free-Space Management
	Bit Vector (contd.)
	Free-Space Management (Cont.)
	Linked Free Space List on Disk
	Free-Space Management (Cont.)
	Efficiency and Performance
	Efficiency and Performance (Cont.)
	Recovery
	End of Chapter 12

