Chapter 12: File System

Implementation
-] -]

Operating System Concepts — 9" Ed. Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini Venkatasubramanian

Chapter 12: File System Implementation

File-System Structure
Directory Implementation
Allocation Methods
Free-Space Management
Efficiency and Performance

OO 0dodod

Recovery

Objectives

[1 To describe the details of implementing
] local file systems and
] directory structures
[1 To discuss block allocation and free-block algorithms and trade-offs

Basics: File-System Structure

File structure
] Logical storage unit
] Collection of related information
File system resides on secondary storage (disks)
] Provided user interface to storage
» mapping logical to physical

] Provides efficient and convenient access to disk by allowing
data to be stored, located, and retrieved easily

Disk provides in-place rewrite and random access

] Itis possible to read a block from the disk, modify the block,
and write it back into the same place.

1 1/0O transfers performed in blocks of 1 or more sectors
» A sector is usually 512 bytes

File control block (FCB) — storage structure consisting of
information about a file

Directory Implementation

[] The choice of the directory implementation is crucial for the
efficiency, performance, and reliability of the file system.

[] Linear list of file names with pointer to the data blocks
] Pros: Simple to program
] Cons: Time-consuming to execute -- Linear search time
] Solutions:
» Keep sorted + binary search
» Use indexes for search, such as B+ tree
] Hash Table — linear list with hash data structure
] Hash on file name
] Decreases directory search time

1 Collisions — situations where two file names hash to the
same location

] Each hash entry can be a linked list - resolve collisions by
adding new entry to linked list.

17

Allocation of Disk Space

] Low level access methods depend upon the disk allocation scheme used to
store file data

] Contiguous Allocation
1 Linked List Allocation
1 Indexed Allocation

18

Allocation Methods - Contiguous

1 An allocation method refers to how disk blocks are allocated for files

[] Contiguous allocation — each file occupies set of contiguous blocks

] Best performance in most cases

» Commonly, hardware is optimized for sequential access

» For a magnetic disk — reduces seek time, head movement
] Simple — only info required:

» starting location (block #) and

» length (number of blocks)
] Problems include

» finding space for file,

» knowing file size,

» external fragmentation,

» need for compaction off-line (downtime) or on-line

Can be costly

19

Contiguous Allocation

[1 For simplicity, assume 1 block = 1 sector
1 Mapping from logical to physical - <Q, R>

/—\ directory
I ‘
count file start length
Q o] 101 2[] 3] count 0O 2
/ f tr 14 3
L1 sL1 eL] 701 mail 19 6
LA/512 e ooe
8] o[1101111 IS
\ tr f 6 2
R 12[113[J14[J15[]
16[]17[118[]19[]
mail
20[121[J22[]23[]
24[J25[J26[127[]
list
28[]29[130[]31[]
N

Block to be accessed = Q + starting address
Displacement into block = R

Allocation Methods - Linked

[1 Linked allocation — each file a linked list of blocks
[] Blocks may be scattered anywhere on the disk. Block =
[[1 Each block contains pointer to the next block

] Disk space is used to store pointers,

» if disk block is 512 bytes, and pointer (disk address)
requires 4 bytes, user sees 508 bytes of data.

] Pointers in list not accessible
] File ends at nil pointer
] Pros: No external fragmentation
1 No compaction
[] Cons: Locating a block can take many I/Os and disk seeks

pointer

Data

22

Linked Allocation

[] Mapping from logical address o physical

Q
LAI5087

R

Block to be accessed is the Q-th block in the linked chain of blocks
representing the file.

Displacement into block =R + 4

23

Linked Allocation

directory
file start end
jeep 9 25

8[]
12[JA3[114 J15[]
16[_[17[_]18[]19[]

[110[2]11[]

20[]21 2 [123[]
24[J25[1l26[J27[]

28[]29[130]31[]

e

24

Linked Allocation (cont.)

1 Slow - defies principle of locality.

] Need to read through linked list nodes sequentially to find the record of
interest.

1 Not very reliable
] System crashes can scramble files being updated.
1 Important variation on linked allocation method

] File-allocation table (FAT) - disk-space allocation used by MS-DOS and
0S/2.

25

File Allocation Table (FAT)

] Instead of link in each block...
] put all links in one table

] the File Allocation Table
(FAT)

] One entry per physical block in disk

] Directory points to first & last
blocks of file

] Each block points to next block
(or EOF)

1 Unused block: value =0

directory entry

test | eee | 217 |—
name start block 0
— 217
339
618

no. of disk blocks -1

618

339

A

FAT

28

FAT File Systems

[] Advantages

] Advantages of Linked File System

1 FAT can be cached in memory

] Searchable at CPU speeds, pseudo-random access
[] Disadvantages

] Limited size, not suitable for very large disks

1 FAT cache describes entire disk,

» Not just open files!
] Not fast enough for large databases

[] Used in MS-DQOS, early Windows systems

29

Disk Defragmentation

[] Re-organize blocks in disk so that file is (mostly) contiguous
] Link or FAT organization preserved
[] Purpose:

] To reduce disk arm movement during sequential accesses

30

30

Allocation Methods - Indexed

[] If FAT is not used, linked allocation cannot support efficient direct access,

] since the pointers to the blocks are scattered with the blocks
themselves all over the disk and must be retrieved in order.

] How to solve this?
[1 Indexed allocation
] Each file has its own index block(s) of pointers to its data blocks

[] Logical view

Index table

31

Example of Indexed Allocation

N
e

o] 1] 2[] 3[]
4[] 5[] 701
8 1 o[Jio[\11[]
12[]18[]14
16
20 J21[|22[A23[|
24[125[[26[J27[|
28[29[J30[131[_]

directory
file index block
jeep 19

N

32

Indexed Allocation (Cont.)

[1 Dynamic access without external fragmentation, but have overhead
of index block

] Mapping from logical to physical
] in a file of maximum size of 256K bytes and
] block size of 512 bytes.
1 We need only 1 block for index table
LA/512/Q
\R

Q = displacement into index table
R = displacement into block

33

Indexed Allocation — Mapping (Cont.)

] A single index block might not be able to hold enough pointers for a large file

] Several schemes to deal with this issue (e.g., linked, multi-level, combined)

[1 Linked scheme — Link blocks of index table (no limit on size)

Index block file block

.

|
\

link

link

34

Indexed Allocation — Mapping (Cont.)

[1 Two-level index (generalizes to multi-level)

] 4K blocks could store 1,024 four-byte pointers in outer index —
1 1,048,567 data blocks and file size of up to 4GB

2nd level Index/-

Index block

link

35

Combined Scheme: used in UNIX UFS

4K bytes per block, 32-bit addresses

mode

owners (2)

timestamps (3)

size block count

data

data

data

direct blocks 7

single indirect —

1

data

data

double indirect

i

Y

data

triple indirect

L

Y

data

==

i

data

data

37

Combined Scheme

] Another alternative, used in UNIX-based file systems
1 Keep the first, say, 15 pointers of the index block in the file’'s inode.
1 First 12 of these pointers point to direct blocks
» They contain addresses of blocks that contain data of the file.

» Thus, the data for small files (of no more than 12 blocks) do not need
a separate index block.

» If the block size is 4 KB, then up to 48 KB of data can be accessed
directly.

1 The next 3 pointers point to indirect blocks:
1. The first points to a single indirect block,

which is an index block containing not data but the addresses of
blocks that do contain data.

2. The second points to a double indirect block,

which contains the address of a block that contains the addresses
of blocks that contain pointers to the actual data blocks.

3. The last pointer contains the address of a triple indirect block.

38

Unix inode

1 Aninode (index node) is a control structure that contains key information
needed by the OS to access a particular file.

] Several file names may be associated with a single inode,
] but each file is controlled by exactly ONE inode.

1 On the disk, there is an inode table
] Contains the inodes of all the files in the filesystem.

1 When a file is opened, its inode is brought into main memory and stored in
a memory-resident inode table.

Copyright ©: Nahrstedt, Angrave, 39
Abdelzaher

39

Information in the inode

File Mode

Link Count
Owner 1D
Group ID

File Size

File Addresses
Last Accessed
Last Modified
Inode Modified

16-bit flag that stores access and execution permissions associated with the file.

12-14 File type (regular, directory, character or block special, FIFO pipe
9-11 Execution flags

8 Owner read permission
Owner write permission
Owner execute permission
Group read permission
Group write permission
Group execute permission
Other read permission
Other write permission
Other execute permission

R R T L I = AT |

Number of directory references to this inode
Individual owner of file

Group owner associated with this file
Number of bytes in file

39 bytes of address information

Time of last file access

Time of last file modification

Time of last inode modification

Copyright ©: Nahrstedt, Angrave
Abdelzaher

b

40

Directories

[] In Unix a directory is simply a file that contains a list of file names plus pointers

to associated inodes

Inode table

Directory
i1 Namel
i2 Name?2
i3 Name3
i4 Name4

Copyright ©: Nahrstedt, Angrave,
Abdelzaher

41

Free-Space Management

[1 File system maintains free-space list to track available blocks/clusters
1 (Using term “block” for simplicity)
] Several ways to implement

[] Bit vector or bit map (n blocks)

01 2 n-1

- 1 = block]i] free
bit[i] =
0 = block]i] occupied

44

Bit Vector (contd.)

[] Pros:
] Relative simplicity
] Efficiency in finding the first n consecutive free blocks on the disk.
» Easy to get contiguous files

1 Example: one technique for finding the first free block
] Sequentially check each word in the bit map if it is not O
» 0-valued word contains only 0 bits
» represents a set of allocated blocks.
] First non-0 word is scanned for the first 1 bit,
» which is the location of the first free block.

[] The calculation of this free block number is

1 (number of bits per word) * (humber of O-value words) + offset of first 1
bit.

45

Free-Space Management (Cont.)

[] Bit map requires extra space
] Example:
block size = 4KB = 212 bytes
disk size = 240 bytes (1 terabyte)
n = 240/212 = 228 hits (or 32MB)
if clusters of 4 blocks -> 8MB of memory

[1 Example: BSD File system

46

Linked Free Space List on Disk

Linked list (free list) -- keep a
linked list of free blocks

Pros: free-space list head
1 No waste of space

1 No need to traverse the entire
list (if # free blocks recorded)

Cons:

1 Cannot get contiguous space
easily

1 not very efficient because
linked list needs traversal.

20 121|227 123[|

24 |25 |26 |27

28[]29[130[131 |
p/

47

Free-Space Management (Cont.)

[1 Linked list of indices - Grouping
1 A modification of the free-list approach
1 Keep a linked list of index blocks.
] Each index block contains:
1. addresses of free blocks and
2. a pointer to the next index block.

1 Pros: A large number of free blocks can now be found quickly

» Compared to the standard linked-list approach
[1 Counting

] Linked list of contiguous blocks that are free

] Free list node contains pointer and number of free blocks
starting from that address.

48

Efficiency and Performance

1 In general, the efficiency of a file system dependents on:
] Disk allocation and directory algorithms
] Types of data kept in file’ s directory entry
] Fixed-size or varying-size data structures used

[] Even after the basic file-system algorithms have been selected, we can still
improve performance in several ways.

50

Efficiency and Performance (Cont.)

[1 Performance improved by:
] Keeping data and metadata close together — generic principle
» Do not want to perform a lot of extra 1/O just to get file information

] Using buffer cache — separate section of main memory for frequently
used blocks

] Optimize caching - depending on the access type of the file.
1 E.g., afile being accessed sequentially then use read-ahead

] Read-ahead -- a requested page and several subsequent pages are
read and cached.

» These pages are likely to be requested after the current page is
processed.

» Retrieving these data from the disk in one transfer and caching them
saves a considerable amount of time.

Recovery

Files and directories are kept both in main memory and on disk

] Care must be taken to ensure that a system failure does not
result in loss of data or in data inconsistency.

1 How to recover from such a failure

Consistency checking — compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies

1 Can be slow and sometimes fails

Use system programs to back up data from disk to another
storage device

Recover lost file or disk by restoring data from backup

56

End of Chapter 12

Operating System Concepts — 9" Ed. Silberschatz, Galvin and Gagne ©2013. Modified by Dmitri V. Kalashnikov and Nalini Venkatasubramanian

	Chapter 12: File System Implementation
	 Chapter 12: File System Implementation
	Objectives
	Basics: File-System Structure
	Directory Implementation
	Allocation of Disk Space
	Allocation Methods - Contiguous
	Contiguous Allocation
	Allocation Methods - Linked
	Linked Allocation
	Linked Allocation
	Linked Allocation (cont.)
	File Allocation Table (FAT)
	FAT File Systems
	Disk Defragmentation
	Allocation Methods - Indexed
	Example of Indexed Allocation
	Indexed Allocation (Cont.)
	Indexed Allocation – Mapping (Cont.)
	Indexed Allocation – Mapping (Cont.)
	Combined Scheme: used in UNIX UFS �
	Combined Scheme
	Unix inode
	Information in the inode
	Directories
	Free-Space Management
	Bit Vector (contd.)
	Free-Space Management (Cont.)
	Linked Free Space List on Disk
	Free-Space Management (Cont.)
	Efficiency and Performance
	Efficiency and Performance (Cont.)
	Recovery
	End of Chapter 12

